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Automatic Retinal Layer Segmentation of OCT
Images With Central Serous Retinopathy

Dehui Xiang , Geng Chen, Fei Shi , Weifang Zhu, Qinghuai Liu, Songtao Yuan, and Xinjian Chen

Abstract—In this paper, an automatic method is reported
for simultaneously segmenting layers and fluid in 3-D OCT
retinal images of subjects suffering from central serous
retinopathy. To enhance contrast between adjacent layers,
multiscale bright and dark layer detection filters are pro-
posed. Due to appearance of serous fluid or pigment ep-
ithelial detachment caused fluid, contrast between adja-
cent layers is often reduced, and also large morphological
changes are caused. In addition, 24 features are designed
for random forest classifiers. Then, 8 coarse surfaces are
obtained based on the trained random forest classifiers. Fi-
nally, a hypergraph is constructed based on the smoothed
image and the layer structure detection responses. A mod-
ified live wire algorithm is proposed to accurately detect
surfaces between retinal layers, even though OCT images
with fluids are of low contrast and layers are largely de-
formed. The proposed method was evaluated on 48 spec-
tral domain OCT images with central serous retinopathy.
The experimental results showed that the proposed method
outperformed the state-of-art methods with regard to layers
and fluid segmentation.

Index Terms—Central serous retinopathy, optical coher-
ence tomography, random forest, hybrid live wire.

I. INTRODUCTION

C ENTRAL serous retinopathy (CSR) is a serious complex
disease that usually leads to blindness. CSR occurs due

to accumulation of serous fluid under interdigitation zone [1]
of retina and may also lead to retinal pigment epithelium de-
tachment, as shown in Fig. 1. There are two types of CSR
[2], [3]. In Type 1 CSR, only serous fluid accumulates under
the interdigitation zone. In Type 2 CSR, retinal pigment ep-
ithelium detachment may appear under serous fluid and may
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Fig. 1. OCT image with central serous retinopathy. (a) A B-scan image
of OCT volume; (b) The manual annotation of retinal surfaces and layers.

also occur near the center of the macula. The two types of fluid
lead to large morphological changes of retinal layers. In addi-
tion, thickness and optical intensity of retinal layers may change
abruptly due to occurrence of CSR [4]–[6]. CSR is one common
type of macular disorders and the macula is responsible for the
central vision. It is important to provide accurate diagnosis and
treatment of CSR.

Optical coherence tomography (OCT) is a noninvasive and
non-contact imaging modality for morphological analysis and
diagnosis of retinal abnormality, such as CSR, macular hole,
diabetic macular edema, glaucoma and age-related macular de-
generation. The great improvements of OCT devices make it
possible diagnose and monitor retinal diseases more accurately.
Layer and lesion segmentation are basic steps for abnormal-
ity quantification. Fig. 1 shows a macular centered OCT B-
scan image with CSR. The vitreous, retina, fluid and choroid
are annotated with arrows. The surfaces are numbered 1 to 11
from top to bottom. The retinal layers are nerve fiber layer
(NFL), ganglion cell layer (GCL), inner plexiform layer (IPL),
inner nuclear layer (INL), outer plexiform layer (OPL), outer
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nuclear layer (ONL), external limiting membrane (ELM), myoid
zone, ellipsoid zone, outer photoreceptor segment layer (OPSL),
interdigitation zone, retinal pigment epithelium (RPE)/Bruch’s
complex and choroid. The abnormalities include serosity (fluid),
pigment epithelial detachment (PED) caused fluid.

To quantify thickness of retinal layers and volume of fluid,is
important to develop a tool for reliable and automatic segmen-
tation of both retinal layers and fluid since manual segmentation
is time-consuming for huge amount of OCT images in clinic ap-
plications. However, there are several challenges in retinal layer
and fluid segmentation. First, internal structures of retinas are
complex and difficult to be recognized as shown in Fig. 1. Inner
boundaries of retinal layers are non-smooth and retinal layers
produce great morphological and structural changes. Second,
there may be several types of fluid, e.g., serosity, PED caused
fluid. This leads to low contrast and blurred boundaries in OCT
images between retinal layers. Therefore, layer segmentation
may fail in using traditional surface detection methods, such as
the graph search algorithm. Fluid segmentation using conven-
tional methods, such as region growing may easily leak into
its neighbors. Therefore, new methods that can segment retinal
layers with fluid are needed for quantitative analysis of CSR.

In this paper, we focus on segmentation for retinas with CSR
in OCT images, which is associated with serosity and PED
caused fluid. A fully automatic, supervised layer segmentation
method is proposed for macular-centered OCT images with
CSR. Shapes and intensities of retinal layers are learned by
random forest classifiers using a weighted voting mechanism
proposed in our previous work [7] since each tree contributes
unevenly to the final decision depending on the strength of
classification for a new example [8]. Layer detection filters are
introduced and a hyper graph is constructed for the live wire
algorithm to cope with the low contrast and blurred boundaries.
The initial surfaces constrain the refinement of retinal surfaces
by using the hybrid live wire algorithm so as to cope with the
structural changes of retinal layers. Compared to our previous
work [9], it is much more difficult to detect surfaces in OCT
images with CSR since fluid may exhibit in the retina and be-
low RPE. Compared to previous methods, the novelty of the
proposed method lies in:

(1) Multi-scale bright and dark layer-like structure detection
filters are designed for estimation of possible bright and
dark retinal layers with different thickness since OCT
images with fluid are of low contrast and layer bound-
aries are blurred.

(2) Twenty four features are introduced to random forest
classifiers aiming at finding the initial surfaces of retinal
layers affected by abnormalities, such as serosity and
PED caused fluid, which is different from the boundary
based random forest method [10].

(3) A hyper graph is constructed based on the smoothed
image and the layer structure detection responses, and
then a modified live wire algorithm is proposed to accu-
rately detect surfaces between retinal layers even though
retinal layers are deformed due to fluid.

(4) Layer segmentation and abnormal region segmenta-
tion are simultaneously performed and the proposed

method achieves higher accuracy than previous methods
[9], [11].

II. RELATED WORK

Many methods have been proposed for automatic retinal layer
segmentation of OCT images. Most methods are based on the
graph search algorithm [12]–[19]. Recently, by combining the
graph search algorithm and Dijkstra’s algorithm, Tian et al.
[20] proposed a shortest path based graph search to detect reti-
nal boundaries by searching the shortest path between two end
nodes. The time complexity was reduced by the limitation of the
search region and down-sampling. Vermeer et al. [21] used sup-
port vector machines with features based on image intensities
and gradients to detect five interfaces of retinas. Srinivasan et al.
[22] also used support vector machines combined with average
intensity of each row to find the initial surfaces, and then used
the graph theory based dynamic programming algorithm to de-
tect six surfaces in OCT images of wild-type rat retinas. Lang
et al. [10] introduced a random forest classifier to classify eight
retinal layers in macular cube images. The features were mainly
designed for boundary classification of the normal eyes since
the contrast between neighboring layers was much higher than
that of OCT images of abnormal retinas. Novosel et al. [23]
developed a loosely-coupled level set method to segment retinal
layers coupling through the order of layers and thickness priors
but only eight interfaces were detected in the OCT images from
normal retinas.

Many other methods concentrated on the segmentation of
retinal abnormalities. Quellec et al. [24] reported an automated
symptomatic exudate-associated derangements (SEAD) foot-
print detection method. Chen et al. [11] proposed a graph-
search-graph-cut (GSGC) method to segment SEAD associated
with AMD. Dufour et al. [25] proposed a graph-search algo-
rithm with trained hard and soft constraints to deal with drusen.
Ding et al. [26] used a graph cut method to segment top and
bottom layers of retina and then a split Bregman-based seg-
mentation method was used to segment subretinal fluid and
sub-RPE fluid between layers. Finally, a random forest clas-
sifier was trained to segment the true fluid regions. In previ-
ous work, we proposed a multi-resolution graph search method
to perform simultaneous layer segmentation and fluid segmen-
tation. This method is effective for OCT images with serous
PEDs [9]. Xu et al. [27] developed a voxel classification based
approach using a layer-dependent stratified sampling strategy to
detect SEAD. Hassan et al. [3] used a structure tensor approach
combined with a nonlinear diffusion process for the automated
detection of ELM and choroid in order to discriminate macular
edema and CSR from OCT images using a support vector ma-
chine classifier. Wang et al. [28] utilized a fuzzy level set-based
segmentation method to segment diabetic macular edema. De
Sisternes et al. [29] segmented nine surfaces from OCT images
in normal and age-related macular degeneration eyes based on
the iterative adaptation of a weighted median process, which is
constrained with a set of smoothness constraints and pre-defined
rules. Novosel et al. [6] developed a locally-adaptive loosely-
coupled level set method to segment retinal layers and fluids
in OCT images with CSR. However, only four interfaces and
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Fig. 2. Flow chart of the proposed framework.

CSR without PED fluids were segmented. Novosel et al. [30]
used a loosely-coupled level set method again to segment retinal
layers and lesions in OCT images with CSR and AMD but only
detected seven surfaces in non-vessel regions.

III. METHOD OVERVIEW

The proposed framework can be split into two stages: training
stage and testing stage illustrated in Fig. 2. In the training stage,
OCT images are manually annotated and features are extracted
for random forest classifier training. In the testing stage, the
proposed segmentation method is a coarse-to-fine segmentation
process that consists of three steps: preprocessing, initialization
and segmentation. Original OCT image is preprocessed to re-
duce noise and gray levels are normalized. The necessary feature
vector is computed from preprocessed OCT images and initial
surfaces of retinal layer are computed with the application of
random forest classifiers to label voxels as different retinal lay-
ers. The final surfaces are refined via the proposed hybrid live
wire algorithm and fluid is also segmented.

IV. PRE-PROCESSING

A. Surface 1 Detection and Image Flattening

Due to eye movement and delay of OCT imaging, unpre-
dictable displacement between successive B-scan images exists
in most volumetric OCT images and cause inaccurate bound-
ary detection. These displacements also lead to image artifacts
during the curvature anisotropic diffusion filtering. Image flat-
tening is often employed to correct the irregular displacements
[9], [13], [20]. A fast method is proposed to find initial surface
1 for the fine surface detection. Gaussian filtering is used to
slice-by-slice smooth B-scan images of the original 3D OCT
image to suppress speckle noise.The Canny edge detection al-
gorithm is used to obtain initial surface 1 and a coarse bottom
surface between retinal pigment epithelium (RPE)/Bruch’s com-
plex and choroid. The single graph live wire algorithm described
in Section VI-A is used to detect the clear boundary between
vitreous and NFL. After surface 1 is detected, it is considered as

Fig. 3. Classification features. (a)–(c) Three spatial features; (d) The
flattened original image; (e) The curvature anisotropic diffusion filtered
image; (f)–(j) Five normalized features; (k)–(n) Four single scale bright
layer responses (σt = 2, 3, 4, 5); (o)–(q) Three multiple scale bright layer
responses(σt,m in = 2, σt ,m ax = 3, 4, 5); (r)–(u) Four single scale dark
layer responses (σt = 2, 3, 4, 5); (v)–(x) Three multiple scale dark layer
respons (σt,m in = 2, σt ,m ax = 3, 4, 5).Ellipsoid zone layer is enhanced
when σt is set to 2 as pointed by the red arrow in (k). IPL layer is
enhanced when σt is set to 4 as pointed by the red arrow in (m).

nce plane. Each A-line below surface 1 is top aligned to obtain
flattened images such robustness of the proposed framework
is improved. The subvolume of the input OCT image between
surface 1 and the coarse bottom surface is extracted.

B. Filtering and Contrast Enhancement

An anisotropic diffusion filter is applied to reduce noise
[27], [31] since the filter can reduce speckle noise and pre-
serve boundary of retinal layers. As can be seen in Fig. 1(b),
intensities of vitreous and choroid are comparative to some reti-
nal layers in OCT image. To reduce the influence of these two
Structures, intensities of vitreous and choroid should be
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Fig. 4. Automatic surface detection. (a) Voxel classification via random
forest; (b) The eight initial curves/surfaces with the filtered image.

ssed. In addition, contrast between adjacent retinal layers can
also be enhanced. The filtered and smoothed image is then nor-
malized as,

IN (�x)

=

⎧
⎨

⎩

IN,max; If (�x) ≥ If,s + If,r ;
IN , m a x

If , r
(If (�x)− If,s) ; If,s ≤ If (�x) < If,s + If,r ;

0; If (�x) < If,s .

(1)

where If (�x) is the intensity of a voxel, �x denotes 3D coor-
dinates, If,s denotes the lower intensity, If,r is the intensity
range, If,s + If,r is therefore the upper intensity, IN,max is the
output maximal normalized intensity. Intensities of vitreous and
choroid are highly reduced as shown in Fig. 4(b).

V. INITIAL SURFACE DETECTION

Since inner boundaries of retinal layers are non-smooth and
abnormal retinal layers produce great morphological and struc-
tural changes, it is advisable that initial boundaries of retinal
layers are detected and used to constrain the fine segmentation.
Recently, machine learning classifiers have been introduced into
normal layer recognition of ophthalmic OCT images [10], [21].
Vermeer et al. [21] defined Haar-like features such as averages
and gradients in A-line and B-scan with different scales, and
then used the support vector machine to classify pixels. Lang
et al. [10] also proposed retinal layer boundary based features
such as signed value of the first derivative and magnitude of
the second derivative, and then used random forest classifiers to
segment eight retinal layers. Those two methods mainly used
boundary based features to provide a probability of pixels be-
longing to each layer; however, contrast between two layers
is often low and the boundaries are also weak because of the
occurrence of the serosity under the ONL.

In this paper, the random forests method based on our previous
work [7] is used. The retinal layers in OCT images with CSR are
manually labeled as eight classes. Class 1: NFL, Class 2: GCL,
Class 3: IPL, Class 4: INL, Class 5: OPL, Class 6: ONL + ELM
+ myoid zone, Class 7: ellipsoid zone + OPSL + interdigitation
zone + RPE/Bruch’s complex + fluid, and Class 0: choroid.
High-dimensional features and labels are used to train random
forest classifiers. Due to high resolutions and large size of OCT
images, the number of features is much smaller than that in some

previous applications [7], [10]. Due to appearance of serous
fluid or PED caused fluid, contrast between adjacent layers is
often reduced, and also large morphological changes are caused.
In order to reduce this influence of fluid, twenty four features
including: layer location, gray scale and structural response are
proposed to find initial retinal layers.

A. Layer Location Features

Unlike normal retinal layers, fovea is often deformed up-
ward by fluid in OCT images with CSR. It is impossible to
find the center of the fovea by computing the thinnest position
as in [10]. Suppose Īf (�x) is the flattened and smoothed train-
ing or testing 3D OCT image. Coordinates of each voxel are
�x = x, y, z. Since Īf (�x) is the flattened and smoothed im-
age, surface 1 is considered as the x− y − 0 plane. For the
image Īf (�x), each B-scan image is scanned to obtain x,
y and z coordinates of each voxel. Since layers and fluid
are located in certain restricted space, these three features
(F1 (�x) = x, F2 (�x) = y, F3 (�x) = z) denote the location infor-
mation of each voxel related to the interface of vitreous and
NFL, as shown in Fig. 3(a)–(c).

B. Gray Scale Features

The intensity of the flattened original image I (�x) is con-
sidered as one feature F4 (�x) = Ī (�x) as shown in Fig. 3(d).
The flattened original image is denoised with the curvature
anisotropic diffusion filtering. The intensity of the flattened and
smoothed image Īf (�x) is considered as one feature F5 (�x) =
Īf (�x) as shown in Fig. 3(e). In the clinical images, the inten-
sity range varies from one patient to another and the contrast
between neighboring layers is often low. To address these prob-
lems, sub-range intensity of Īf (�x) is further normalized as,

Fi (�x) =

⎧
⎨

⎩

Īmax; Īf (�x) ≥ If 2 ;
Īm a x

If 2−If 1

(
Īf (�x)− If 1

)
; If 1 ≤ Īf (�x) < If 2 ;

0; Īf (�x) < If 1 .

(2)

where Fi (�x) is the normalized gray scale feature
(i = 6, 7, . . . , 10), If 1 denotes the lower intensity, If 2 denotes
the upper intensity, Īmax is the output maximal normalized in-
tensity. Five normalized gray scale features are used and al-
low the classifiers to easily differentiate the darker layers and
the brighter layers, and particularly recognize NFL, IPL, OPL,
ellipsoid zone + OPSL + interdigitation zone + RPE/Bruch’s
complex, as shown in Fig. 3(f)–(j).

C. Structural Response Features

Although sub-range intensity normalization is useful to im-
prove the contrast between adjacent layers, structural responses
can also provide distinguishable layer features according to layer
structures. Since thickness varies from different retinal layers
and dark-to-bright or bright-to-dark transition is often kept in
OCT images. Therefore, retinal layers with different thickness
can be enhanced by layer detection filters with different scales
in scale space, and additional features with single scale and
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multiple scale layer detection filters can be supplemented to
discriminate different layers. For estimation of the possibility of
a layer element in a 3D OCT image, Hessian matrix is computed
in the scale space as

H (�x, σt) = Īf (�x) ∗

⎡

⎢
⎢
⎣

∂ 2 G(�x,σt )
∂x2

∂ 2 G(�x,σt )
∂x∂y

∂ 2 G(�x,σt )
∂x∂z

∂ 2 G(�x,σt )
∂y∂x

∂ 2 G(�x,σt )
∂y 2

∂ 2 G(�x,σt )
∂y∂z

∂ 2 G(�x,σt )
∂z∂x

∂ 2 G(�x,σt )
∂z∂y

∂ 2 G(�x,σt )
∂z 2

⎤

⎥
⎥
⎦

(3)

where ∗ denotes the convolution operation, G (�x, σt) is a 3D
Gaussian function, σt is the standard deviation (also called
scale). The three eigenvalues of H (�x, σt) : |λ1 (�x, σt)| ≤
|λ2 (�x, σt)| ≤ |λ3 (�x, σt)| can be used to define layer structural
responses.

For bright layer structures, λ3 (�x, σt) < 0 has to be satisfied;
while for dark layer structures, λ3 (�x, σt) > 0 has to be satisfied.
For a bright layer with a certain thickness, structural response
most stably corresponds to some specific scale σt . Therefore, σt

can also be considered as the thickness of a layer, and the bright
layer possibility can be estimated in the scale space as

L (�x, σt)

=

{
|λ3 (�x, σt)| exp

(
−αλ2

1 (�x,σt )+βλ2
2 (�x,σt )

λ2
3 (�x,σt )

)
, λ3 (�x, σt) < 0

0, λ3 (�x, σt) ≥ 0
(4)

where α and β are symmetric parameters, which control the
ratio between the two minor components λ1 (�x, σt), λ2 (�x, σt)
and the principal component λ3 (�x, σt). With a single scale or
thickness σt , bright layer structural response feature Fi (�x) =
L (�x, σt) can be computed by (4) (i = 11, 12, . . . , 14), as shown
in Fig. 3(k)–(n). For instance, ellipsoid zone layer is enhanced
when σt is set to 2 as pointed by the red arrow in Fig. 3(k). IPL
layer is enhanced when σt is set to 4 as pointed by the red arrow
in Fig. 3(m). The dark layer possibility is defined as

L (�x, σt)

=

{
|λ3 (�x, σt)| exp

(
−αλ2

1 (�x,σt )+βλ2
2 (�x,σt )

λ2
3 (�x,σt )

)
, λ3 (�x, σt) > 0

0, λ3 (�x, σt) ≤ 0
(5)

Similarly, with a single scale or thickness σt , dark layer struc-
tural response feature Fi (�x) = L (�x, σt) can be computed by
(5) (i = 18, 19, . . . , 21) as shown in Fig. 3(r)–(u).

To take into account varying sizes of the layers, the scale-
dependent layer possibility function L (�x, σt) is computed for
all voxels �x of the 3D image domain. Thickness values are
discretized values between a minimal scale σt,min and a maximal
scale σt,max , using a linear scale. The multiscale bright and dark
layer response are both obtained by selecting the maximum
response over the range of all scales with the corresponding
single scale response in (4) and (5) as

Lm (�x, σt) = max
σt , m in≤σt≤σt , m a x

σ2
t L (�x, σt) (6)

Fig. 5. Hybrid live wire. (a) The bright layer enhanced image and the
filtered image with a initial curve (yellow); (b) The hybrid graph GH ;
(c) The bright layer enhanced image and the filtered image with the
refined curve (red) via the hybrid live wire algorithm.

where m represents the multiscale filtering. Therefore, with
multiple scales, bright layer multiscale structural response fea-
ture Fi (�x) = L (�x, σt) can be computed by (6) (i = 15, 16, 17)
as shown in Fig. 3(o)–(q). Similarly, dark layer multiscale struc-
tural response feature Fi (�x) = L (�x, σt) can be computed by
(6) (i = 22, 23, 24), as shown in Fig. 3(v)–(x).

The bright layer responses allow the classifiers to learn the
possibility of NFL, IPL, OPL, ellipsoid zone + OPSL + inter-
digitation zone + RPE/Bruch’s complex while the dark layer
responses allow the classifier to learn the possibility of GCL,
INL, ONL + ELM + myoid zone and choroid. For each scale,
the bright layer responses [Fig. 3(k)–(n)] and the dark re-
sponses [Fig. 3(r)–(u)] are computed. Multiple responses from
the minimal scale and current scale [Fig. 3(o)–(q) and (v)–(x)]
are also computed. Totally, fourteen layer structural response
features are generated for the classifier. The eigenvectors
of Hessian matrix corresponding to the three eigenvalues
λ1 (�x, σt), λ2 (�x, σt), λ3 (�x, σt) are orthogonal to each other.
One eigenvector is the normal of the layer and the other two
eigenvector are tangent. Therefore, layer response features are
robust to the deformation and rotation of retinal layers even with
the existence of diseases such as fluid. The random forest clas-
sifiers are trained and used to predict the label of each voxel of
OCT images as shown in Fig. 4(a). The initial curves/surfaces
are shown in Fig. 4(b).

VI. LIVE WIRE FOR SURFACE DETECTION

A. Single Graph Live Wire

1) Single Graph Construction: By following the recommen-
dation in [32], [33] for a 2D image as shown in Fig. 5(b), a single
graph (the blue mesh GF ) can be constructed for Surface 1 De-
tection. Let a connected and directed graph G be represented
as a pair G = (V,E) with nodes v ∈ V and edges e ∈ E. A
directed edge eij connects a node vi and a neighboring node vj

and points from the node vi to the node vj , while eji denotes
the directed edge pointing from the node vj to the node vi . The
edge eij is weighted by cij and the edge eji is weighted by cji .
The node vi has four neighboring pixels, four outward edges eij

and four inward edges eji . For each edge eij or eji , the left pixel
p is assumed to be “inside” while the right pixel q is assumed to
be “outside”. In order to accurately detect the interface between
different retinal layers, the weighting function for the edge eij
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Fig. 6. Retinal surface detection. (a) Retinal layer boundaries with OCT
volume; (b) Retinal surface detected by using the live wire algorithm with
OCT volume.

is constructed as

cij (p, q) =

nk∑

k=1

nl∑

l=1
ωkck (fl (p, q))

nk∑

k=1
ωk

, (7)

where fl is the feature function, which define the edge feature
for eij . The edge features consist of nl = 7 features [32]: the
pixel value of the left pixel p, the pixel value of the right pixel
q, four gradient magnitudes and orientation-sensitive gradient
magnitude. ck is the transfer function, which maps an edge fea-
ture to the feature cost. The transfer functions consist of nk = 6
functions [32]. ωk is a positive constant indicating the emphasis
given to feature fl and transfer function ck . Parameter training
and the orientation property in the live wire algorithm allow it
to find a proper boundary with the similar intensities and feature
distributions of neighboring pixels/voxels. For the first slice in
x-z plane (B-Scan) and in y-z plane, the corresponding transfer
functions cf and oriented edge features fl are off-line trained
and selected for each surface using a training image as described
in [32], and those parameters of the next slice are online com-
puted from the former slice. ωk is also online computed. Since
the values of transfer function can be normalized to [0, 1], ωk

is set to 1.0 when the transfer function ck is selected; while ωk

is set to 0 when the transfer function ck is not selected in the
implementation.

2) Surface 1 Detection: Live wire for single surface detec-
tion is proposed as shown in Fig. 6. The smoothed image is de-
fined as a 3-D grid �x with size X × Y × Z, where �x = (x, y, z),
x = 1, 2, . . . , X , y = 1, 2, . . . , Y and z = 1, 2, . . . , Z. The sur-
face is defined as terrain-like interface S (x, y) ∈ {1, 2, . . . , Z},
where each point (x, y) has one and only one z ∈ {1, 2, . . . , Z}
value. Surface 1 detection is done by finding an oriented path
with the minimum cost in x− z plane and y − z plane succes-
sively with an initial surface. Take x− z plane (B-scan) as an
instance, the initial anchors are equidistantly sampled in one
direction with the sampling step lws from the initial curve. To
search the shortest oriented path between two successive an-
chors, a graph is constructed and edge weights are computed as
(7). The shortest oriented path 〈e1 , e2 , . . . , eno

〉 is found. no is
the number of edges on the shortest oriented path between two

Fig. 7. Automatic surface detection and fluid segmentation. (a) Sur-
faces detected by proposed method and the bright layer response im-
age (σt,m ax = 4.0); (b) Surfaces detected by proposed method and the
bright layer response image (σt,m ax = 2.0); (c) Surfaces detected by
proposed method and the original image; (d) 3D visualization of sur-
faces and the original image; (e) Fluid segmented by proposed method
and the original image; (f) 3D visualization of fluid surfaces and the origi-
nal image; (g) The blue curve indicates the footprint of the above surface
of the segmented fluid, the yellow curves indicate the coarse footprint
of pigment epithelial detachments and the red curve indicates the final
fitted footprint of pigment epithelial detachments.

neighboring anchors ao and ao+1 . o = 1, . . . ,
⌊

ax

lws

⌋
and ax is

X in x− z plane or Y in y − z plane. The corresponding local
energy can be defined as,

elw (ao ,ao+1) =
no∑

u=1

cij (eu ) (8)

Then, the total energy of a boundary curve can be defined as,

Elw =
� a x

l w s 	−1
∑

o=1

elw (ao ,ao+1) (9)
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Fig. 8. Automatic surface detection (green curves indicate the segmentation reference, red curves indicate detected surfaces) of an OCT image
with CSR. (a) The original image; (b) Surfaces detected via the IF algorithm; (c) Surfaces detected via the MGS algorithm; (d) The eight initial
surfaces with the filtered image; (e) Surfaces detected via the RFSGLW algorithm; (f) Surfaces detected via the RFHLW algorithm and the
bright layer response image (σt,m ax = 4.0); (g) Surfaces detected via the RFHLW algorithm and the bright layer response image (σt,m ax = 2.0);
(h) Surfaces detected via the RFHLW algorithm.

Fig. 9. Automatic surface detection (green curves indicate the segmentation reference, red curves indicate the detected surfaces) of an OCT
image with CSR and pigment epithelial detachments. (a) The original image; (b) Surfaces detected via the IF algorithm; (c) Surfaces detected via
the MGS algorithm; (d) The eight initial surfaces with the filtered image; (e) Surfaces detected via the RFSGLW algorithm; (f) Surfaces detected
via the RFHLW algorithm and the bright layer response image (σt,m ax = 4.0); (g) Surfaces detected via the RFHLW algorithm and the bright layer
response image (σt,m ax = 2.0); (h) Surfaces detected via the RFHLW algorithm.

Initial anchors ao are equidistantly sampled with the step lws

from the initial surfaces. The total energy of the refined boundary
curve a′ is computed according to (9). The step lws is reduced
and a′ is again considered as the initial curve. The process is
stopped if the total energy difference between two iterations
is not larger than ΔE or lws ≤ 1. The procedure is shown in
Algorithm 1. Due to the orientation of the live wire algorithm,
the current slice image and the initial curve need to be flipped
down before detect surface 1. The final curve needs to be flipped
down after it is refined.

B. Hybrid Graph Live Wire

1) Hybrid Graph Construction: Most surfaces in OCT im-
ages are corrupted with speckles noise. The boundaries of the

retinal layers are often blurred and of low contrast. Boundaries
tends to be incorrectly detected via graph search algorithms [see
Figs. 8(b)(c) and 9(b)(c)] and traditional live wire algorithm [see
Figs. 8(e) and 9(e)]. To solve these problems, the anisotropic
diffusion filtering [31] is first used to enhance the retinal layers
and remove noise. In addition, our approach is based on a selec-
tive layer detection filter that avoids responses from non-layer
structures and enhances layer structures. To accurately detect
the boundary, a hybrid graph is constructed by integrating the
filtered image and the bright layer enhanced image as shown
in Fig. 5. Defining a special graph combining two graphs, or
a hyper-graph, is a good choice to utilize the original infor-
mation and the layer possibility information. Given two graphs
GF =

(
V F ,EF

)
for the filtered image and GB =

(
V B ,EB

)

for the bright layer enhanced image, a special product graph is
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defined as GH =
(
V H ,EH

)
, where, F stands for the filtered

image, B stands for the layer enhanced image computed by (4)
or (6), H stands for “hybrid”. V F and V B are one-to-one cor-
responded. Instead of using a separate implementation of GF

and GB , the product graph GH is used to detect retinal sur-
faces. Since the critical points of total path cost are assumed
to be minima, finding these minimal oriented edges yields the
solution between two initial points. This requires an updated
definition of the weight of the edge cij (p, q) on the graph G.
The edge weight of the product graph GH is defined as

cH
ij (p, q) = cF

ij (p, q)⊗ cB
ij (p, q), (10)

where ⊗ denotes direct product, cF
ij (p, q) is the filtered image,

cB
ij (p, q) is computed as (7) according to a layer enhanced im-

age. Due to the underlying unifying property, the co-detection
framework is not restricted to find the minimal cost path from
only two images. It can be used to co-detect boundaries from
multiple imaging modalities as long as the graph has the one-
to-one correspondence property.

2) Surface Detection: Like Section VI-A2, the shortest ori-
ented path 〈e1 , e2 , . . . , eno

〉 is also found between two initial
anchors. The corresponding local energy can be defined as,

eH
lw (ao ,ao+1) =

no∑

u=1

cH
ij (eu ) (11)

Then, the total energy of a boundary curve can be defined as,

EH
lw =

� a x
l w s 	−1
∑

o =1

eH
lw (ao ,ao+1) (12)

The retinal surface is detected by the hybrid graph live wire algo-
rithm as pseudo 3D terrain-like mesh. The hybrid live wire algo-
rithm are employed in x− z plane and then in y − z plane. Com-
bined with the above hybrid graph live wire refinement method
for terrain-like surface detection, our optimization method is as
Algorithm 1.

C. Layer and Fluid Segmentation

1) Surfaces 2-11 Detection: For the first slice of the bright
layer enhanced image and the filtered image in x-z plane
(B-Scan) and in y-z plane, the corresponding transfer functions
cf and the corresponding oriented edge features fl are off-line
trained and selected for each surface as described in [32], and
those parameters of the next slice is online computed from the
former slice. ωk is also online computed. For the bright layer
enhanced image and the filtered image respectively, ωk is set
to 1.0 when the transfer function ck is selected; while ωk is set
to 0 when the transfer function ck is not selected in the imple-
mentation. After finding the final oriented path a′, cf and fl are
trained and selected for the next slice. The orientation property
favors boundary detection on a single orientation, i.e., the left
pixel p of an edge eji is assumed to be “inside” while the right
pixel q of the edge eji is assumed to be “outside”. As can be
seen in x-z plane [Fig. 5(c)], the oriented boundary (2D) or the
surface (3D) represents the transition of a brighter layer to a
darker layer from top to bottom. Surfaces 3, 5, 7, 9 and 11 have

Algorithm 1: Live Wire for Retinal Surface Detection.

Require: The filtered and flattened image, Īf (�x); The
multiscale layer response, Lm (�x, σt); The trained transfer
functions, cf ; The trained edge features, fl ; The initial
curve, a; The sampling step, lws ; The A-line flipping
parameter, isf ; Energy parameter, ΔE.

Ensure: Energy parameter, Elw ; Updated curve, a′; The
updated transfer functions, c′f ; The updated edge features,
f ′l .
1: Extract a 2D slice image from Īf (�x) and Lm (�x, σt)

respectively;
2: if isf = true then
3: Flip the 2D slice image in z direction and the initial

curve a;
4: end if
5: Construct a graph G;
6: Compute and assign the edge weight with the trained

transfer functions cf and the trained edge features fl ;
7: Consider the initial curve a as a′;
8: E ′ ← ∞, Elw ← 0;
9: while |Elw − E ′| > ΔE and lws > 1 do

10: E′ ← Elw , Elw ← 0;
11: Sampling anchors ao from the initial curve a′ with

the step lws ;
12: for Each two successive anchors ao and ao+1 do
13: Find the shortest oriented path 〈e1 , e2 , . . . , eno

〉;
14: Compute the local oriented boundary energy elw ;
15: Elw ← Elw + elw ;
16: Equidistantly find lws pixels as the oriented

boundary along the oriented path and update a′;
17: end for
18: lws ← lws/2.
19: end while
20: Smooth the final oriented path a′.
21: if isf = true then
22: Flip the final oriented path a′ in z direction;
23: end if
24: Automatically train and select the transfer functions c′f

and the edge features f ′l according to the final oriented
path a′ for the 2D slice image of Īf (�x) and Lm (�x, σt)
respectively as described in [32].

the dark-to-bright transition from top to bottom in the x-z plane
or the y-z plane, while surfaces 2, 4, 6, 8 and 10 have the bright-
to-dark transition. The darker layer is assumed to be “inside”
while the brighter layer is assumed to be “outside”. Therefore,
to detect surfaces 3, 5, 7, 9 and 11, the 2D slice image and the
initial curve a need to be flipped before the hybrid graph GH is
constructed and the anchors ao are sampled.

2) Fluid Segmentation: After surface 7 is refined, fluid is
segmented via thresholding constrained between surface 7 and
the initial surface 8. The footprint of fluid is computed to label
the disease region. The image under surface 7 is flattened again.
A smaller scale bright layer detection filter is used to enhance
the ellipsoid zone, the interdigitation zone and the RPE/Bruch’s
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complex layer, and suppress the OPSL, the dark layer between
the interdigitation zone and the RPE/Bruch’s complex layer,
choroid and fluid. The initial surfaces 8–10 are successively
obtained by the above surface and refined. In some cases as
shown in Fig. 7, fluid may be associated with PEDs. The RPE
layer may be locally deformed upwards under serosity. This
deformation leads to inaccurate detection of surface 10 and
surface 11. To refine these two surfaces, PEDs must be detected.
Fluid above PEDs is first extracted from the segmented fluid.
From surface 9 to surface 11, each A-line is scanned to find the
above surface of the segmented fluid [the region within the blue
curve in Fig. 7(g)] and stopped at the position of non-fluid to find
the bottom surface. The two surfaces are coarsely considered
as the hulls of fluid above PEDs. Similarly, from surface 11 to
surface 9, each A-line is scanned to find the bottom surface of the
segmented fluid and stopped at the position of non-fluid to find
the above surface. These two surfaces are coarsely considered as
the hulls of PED caused fluid. The footprint of the deformed RPE
layer is then obtained in x-y plane. The pixel is considered in the
footprint [the region within the yellow curve in Fig. 7(g)] if the
distance between the top hulls of fluid above PEDs and PEDs
caused fluid is larger than a given threshold value (four-voxel
height) and the the distance between the bottom hull of fluid
above PEDs and the above hull of PEDs caused fluid is larger
than a given threshold value (four-voxel height). Morphological
opening and closing are applied to the footprint. For each region
in the footprint, the corresponding outer contour is computed via
the convex hull algorithm [34] and is fitted as the corresponding
ellipse. The fitted ellipses are considered as the footprint of
PEDs [the region within the red curve in Fig. 7(g)]. Surface 10’
is then adjusted according to the top hull of fluid above PEDs.
Surface 11 is also generated based on the top hull of PEDs caused
fluid. The final curves/surfaces are shown in Fig. 7(c)–(d). The
segmented fluid is shown in Fig. 7(e)–(f).

VII. EXPERIMENTAL EVALUATION

A. Data

The OCT images were obtained from Jiangsu Province Hos-
pital by using a Cirrus HD-OCT 4000 scanner. Macula-centered
SD-OCT scans of 48 eyes diagnosed with CSR were acquired
as testing images. Another 6 macula-centered SD-OCT images
with CSR were used as training images. All the OCT volume
images contain 512× 128× 1024 voxels and the voxel size is
11.74× 47.24× 1.96 μm3 .

B. Evaluation

To evaluate layer segmentation results, retinal specialists
manually annotated surfaces in the B-scan images to form seg-
mentation reference. Due to time consumption of manual anno-
tation, only 15 out of the 128 B-scans were randomly chosen
and annotated for each 3D OCT volume in the testing data set.
All the 128 B-scans were manually annotated for each 3D OCT
volume in the training data set, and then each 3D OCT volume
was labeled with eight classes. To evaluate fluid segmentation
results, fluid was also manually annotated for each 3D OCT

volume in the testing data set. All fluid in the 128 B-scans was
annotated slice by slice. This study was approved by the intu-
itional review board of Jiangsu Province Hospital and adhered
to the tenets of the Declaration of Helsinki.

To evaluate performance of surface detection methods, aver-
age unsigned surface distance was computed for each surface by
measuring absolute Euclidean distances in the z-axis between
surface detection results of the algorithms and the reference sur-
face. The average signed surface distance errors were computed
for each surface by measuring distances in the z-axis between
surface detection results of the algorithms and the reference sur-
face [9]. To evaluate performance of fluid segmentation meth-
ods, we used three measures: true positive fraction (TPF), false
positive fraction (FPF) and Dice similarity coefficient (DSC)
defined as follows,

TPF =
|Fr ∩ Fa |
|Fr | , (13)

FPF =
|Fr ∩ Fa |
|Br | , (14)

DSC =
2 |Fr ∩ Fa |
|Fr |+ |Fa | , (15)

where |·| denotes the number of voxels; Fr denotes voxels manu-
ally annotated as fluid; Fa denotes voxels segmented as fluid via
algorithms; Br denotes voxels manually annotated as non-fluid.
To demonstrate the improvement of our method, our random
forest + hybrid live wire algorithm (RFHLW) was compared
with the state-of-art methods: the Iowa reference algorithm (IR)
[35], the multi-resolution graph search algorithm (MGS) [9],
the Graph-Search-Graph-Cut algorithm (GSGC) [11] and ran-
dom forest + single graph based live wire algorithm (RFSGLW).
Paired t-tests were used to compare the surface detection and
fluid segmentation errors and a p-value less than 0.05 was con-
sidered statistically significant.

C. Parameter Selection

Variance of the Gaussian smoothing filter was set to 2, the
mean value was set to 0 and its kernel width was set to 9.
Variance of the Canny edge detection algorithm was set 0.1,
and its lower threshold and higher threshold were set the 0.02
and 0.15 of the maximal value of the Gaussian smoothed
OCT image. The intensities of all features were mapped to
[0, 255], i.e., IN,max = 255. When smoothing by the curvature
anisotropic diffusion filter, the conductance parameter λa was
set to 3, the time step ta was 0.06, the number of iterations
na was typically set to 20. The filtered image within the in-
terval [25, 255] was transformed into [0, 255]. Five normalized
features were generated from the filtered image within the in-
tervals [50, 170], [55, 175], [60, 180], [65, 185] and [70, 190]. To
compute layer responses, α and β were set to 0.25, the minimal
scale σt,min was set to 2.0, the maximal scale scale σt,max was
set to 5.0, and the scale step was set to 1.0. The number of
random trees was set to 100, and the maximal depth of a tree
was set to 10 for random forest training. For the refinement of
surface 3–6, α and β were set to 0.25, the minimal scale σt,min
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TABLE I
COMPARISON OF SURFACE DETECTION WITH AVERAGE UNSIGNED SURFACE

DISTANCE (MEAN ± SD μm§) FOR CSR IMAGES

Surface IR MGS RFSGLW RFHLW

1 12.23 ± 20.86 3.69 ± 5.49 2.59 ± 0.76 2.59 ± 0.76
2 21.43 ± 24.2 8.29 ± 15.81 4.83 ± 1.00 4.83 ± 1.00
3 25.61 ± 22.96 16.62 ± 16.13 4.87 ± 1.18 3.48 ± 0.74
4 24.81 ± 21.19 14.03 ± 15.71 2.75 ± 1.18 4.14 ± 1.34
5 27.81 ± 19.2 24.21 ± 18.91 4.79 ± 1.24 3.21 ± 1.73
6 29.78 ± 17.34 24.21 ± 15.44 6.36 ± 2.42 4.98 ± 1.73
7 56.89 ± 42.86 18.09 ± 15.65 8.77 ± 4.31 4.72 ± 1.62
8 53.74 ± 40.05 16.68 ± 13.17 9.52 ± 4.89 4.20 ± 1.98
9 52.5 ± 37.21 16.92 ± 11.33 10.95 ± 4.83 5.50 ± 2.77
10 29.55 ± 35.59 14.64 ± 10.17 8.27 ± 3.02 6.07 ± 2.81
10’ \ 14.74 ± 25.38 6.64 ± 4.37 4.58 ± 3.46
11 26.62 ± 38.76 11.77 ± 28.51 3.54 ± 4.91 3.92 ± 3.92

§ Voxel size in z direction is 1.96 μm.

TABLE II
P-VALUES OF AVERAGE UNSIGNED SURFACE DISTANCE FOR CSR IMAGES

Surface RFHLW vs IR RFHLW vs MGS RFHLW vs RFSGLW

1 0.0028 0.1862 \
2 1.99 × 10−5 0.1403 \
3 3.12 × 10−8 1.22 × 10−6 1.02 × 10−10

4 1.85 × 10−8 7.20 × 10−5 3.00 × 10−11

5 8.43 × 10−12 6.12 × 10−10 7.89 × 10−10

6 5.34 × 10−13 5.31 × 10−4 2.68 × 10−5

7 6.85 × 10−11 5.80 × 10−5 2.28 × 10−9

8 4.37 × 10−11 0.0634 2.91 × 10−11

9 2.09 × 10−11 0.0767 1.76 × 10−10

10 2.57 × 10−5 4.41 × 10−8 1.62 × 10−6

10’ \ 0.0094 2.12 × 10−5

11 3.21 × 10−4 0.0680 0.4175

was set to 2.0, the maximal scale scale σt,max was set to 4.0, and
the scale step was set to 1.0. For the refinement of surface 7–11,
α and β were set to 0.25, only one scale σt = 2.0 was used for
the construction of the hybrid graph GH . The initial step size
lws was set to 1/15 of the width of the B-scan image or the
y-z image and the single graph and hybrid live wire algorithm
were stopped at ΔEH = ΔE = 3000. The scale of the bright
layer detection filter were set to 2.0 for the refinement of surface
7–11. The connected threshold was set to 45 in order to refine
surface 6, 7. The threshold for fluid segmentation was also set
to 45.

VIII. EXPERIMENTAL RESULTS

A. Surface Detection Results

An OCT volume image only with CSR is shown in Fig. 8.
Another OCT volume with CSR and PEDs is shown in Fig. 9.
The green curves indicate manual annotated surfaces. The red
curves indicate the detected surfaces via the surface detection
algorithms. The yellow curves indicate the eight initial surfaces
by using the modified random forest method. Table I shows the
mean and standard deviation of average unsigned surface detec-
tion errors for each surface. The p-values of average unsigned
surface detection errors for each surface are shown in Table II.

TABLE III
COMPARISON OF SURFACE DETECTION WITH AVERAGE SIGNED SURFACE

DISTANCE (MEAN ± SD μm§) FOR CSR IMAGES

Surface IR MGS RFSGLW RFHLW

1 8.58 ± 21.13 −3.52 ± 5.49 1.68 ± 0.55 1.68 ± 0.55
2 15.54 ± 24.59 1.03 ± 7.00 4.40 ± 0.87 4.40 ± 0.87
3 20.29 ± 23.23 10.62 ± 8.15 0.13 ± 2.15 1.64 ± 1.02
4 13.04 ± 22.57 −1.86 ± 6.81 0.82 ± 1.81 3.53 ± 1.62
5 19.27 ± 19.67 17.77 ± 11.39 3.38 ± 2.10 2.26 ± 2.01
6 15.98 ± 19.19 9.60 ± 12.20 −2.88 ± 2.9 2.80 ± 1.78
7 53.67 ± 43.05 12.02 ± 13.96 −1.6 ± 5.09 2.64 ± 2.00
8 45.54 ± 41.18 3.90 ± 12.46 −5.25 ± 5.44 0.20 ± 2.75
9 38.65 ± 39.87 −1.51 ± 11.59 −7.09 ± 5.65 1.78 ± 3.55
10 −14.30 ± 40.18 −5.27 ± 10.71 −1.47 ± 4.96 3.25 ± 4.01
10’ \ −11.81 ± 26.12 −6.12 ± 4.48 −1.15 ± 3.95
11 −12.71 ± 42.57 −9.53 ± 29.05 −1.01 ± 5.34 1.34 ± 4.44

§ Voxel size in z direction is 1.96 μm.

TABLE IV
P-VALUES OF AVERAGE SIGNED SURFACE DISTANCE FOR CSR IMAGES

Surface RFHLW vs IR RFHLW vs MGS RFHLW vs RFSGLW

1 0.0324 4.91 × 10−8 \
2 0.0033 8.77 × 10−4 \
3 1.80 × 10−6 1.51 × 10−9 8.70 × 10−8

4 0.0052 5.56 × 10−7 5.06 × 10−16

5 1.70 × 10−7 2.31 × 10−13 0.0015
6 2.87 × 10−5 4.94 × 10−11 9.65 × 1023

7 1.65 × 10−10 2.48 × 10−7 6.31 × 10−9

8 1.80 × 10−9 1.69 × 10−8 9.69 × 10−12

9 6.77 × 10−8 1.91 × 10−9 1.32 × 10−18

10 0.0055 7.29 × 10−6 3.78 × 10−15

10’ \ 0.0066 1.75 × 10−14

11 0.0685 0.0160 1.16 × 10−4

Table III shows the mean and standard deviation of average
signed surface detection errors for each surface. The p-values
of average signed surface detection errors for each surface are
shown in Table IV.

For the IR algorithm [35], the average unsigned surface detec-
tion errors of surface 1 to 11 were significantly large as shown
in the first colum of Table I, and surface detection errors were
the largest at surface 7 to 9 while detection errors of the rest
surfaces were slightly smaller. As can be seen in the first col-
umn of Table III, the average signed surface detection errors of
surface 1 to 9 were positive and large and the average signed
surface detection errors were also the largest at surface 7 to 9.
These surface detection errors showed the mean position of the
detected surface 1 to 9 via the IR algorithm were lower than that
of the segmentation reference while the mean position of sur-
face 10 to 11 were higher. These surface detection errors were
consistent with surface detection results shown in Figs. 8(b)
and 9(b). Surface detection error occurred from surface 2 to
surface 11 where the large serosity made layers were deformed
upwards. For the MGS algorithm [9], the average unsigned sur-
face detection errors of surface 1 to 11 were slightly smaller
than the IR algorithm as shown in the second column of Ta-
ble I. Surface detection errors were the largest at surface 5 to 7
while detection errors of the rest surfaces were slightly smaller.
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TABLE V
COMPARISON OF FLUID SEGMENTATION (MEAN ± SD %)

TPF FPF DSC

IR 9.04 ± 11.84 0.01 ± 0.03 14.65 ± 15.06
GSGC 64.67 ± 28.96 0.05 ± 0.07 71.05 ± 30.32
MGS 80.19 ± 21.76 0.18 ± 0.18 74.58 ± 20.56
RFSGLW 84.52 ± 20.53 0.03 ± 0.07 88.33 ± 19.68
RFHLW 92.73 ± 15.03 0.05 ± 0.09 92.73 ± 14.21

As can be seen in the second column of Table III, the average
signed surface detection errors of surface 5 to 7 were positive
and large and the average signed surface detection errors were
also the largest at surface 5 to 7. As shown in Figs. 8(c) and
9(c), surface detection error occurred from surface 2 to surface
11 also due to the appearance of the serosity. The surface de-
tection via the MGS algorithm for OCT images with pigment
epithelial detachments first segmented surface 7; however, the
bottom surface of serosity tended to be detected incorrectly as
surface 7. Surface 2 to 6 were refined with surface 7; therefore,
the average surface detection errors of surface 5 to 7 were large
as s shown in Figs. 8(c) and 9(c).

The results in Tables I and III show great improvement
over the IR algorithm [35] and the MGS algorithm [9] even
a large proportion of the layers exhibits dramatic morphologi-
cal changes. For the RFSGLW algorithm, the average unsigned
surface detection errors of surface 1 to 11 were dramatically
reduced compared to the IR algorithm and the MGS algorithm
as shown in the third column of Table I. Surface detection er-
rors were the largest at surface 5 to 7 while detection errors
of the rest surfaces were smaller. As can be seen in the third
column of Table III, the average signed surface detection errors
of surface 6 to 11 were negative. It means the mean positions
of the detected surface 6 to 11 via the RFSGLW algorithm were
higher than those of the segmentation reference. For surface 6,
the occurrence of serosity lead to low intensity of OPL above
the abnormal region as shown in Figs. 1, 8 and 9. As can be seen
in Figs. 8(e) and 9(e), the detected surface 6 was in the internal
of the OPL. For surface 7–11, the average signed surface de-
tection errors disturbed by ELM can be seen Figs. 8(e) and (e).
However, ellipsoid zone was higher enhanced via the bright
layer detection filter with a large scale while the bright layer
response of ELM was much weaker as shown in Figs. 8(f) and
9(f) . Compared to the RFSGLW algorithm, the RFHLW algo-
rithm improved the detection of surface 7 as shown in Figs. 8(h)
and 9(h).

B. Fluid Segmentation Results

An example of fluid segmentation result of an OCT image
only with CSR is shown in Fig. 10 and another example with
CSR and pigment epithelial detachments is shown in Fig. 11.
The green curves indicate manually annotated fluid. The red
curves indicate the segmented fluid via the fluid segmentation
algorithm. Table V shows the mean and standard deviation of
TPF, FPF and DSC. The p-values of the three evaluation mea-
sures for fluid segmentation are shown in Table VI.

Fig. 10. Automatic fluid segmentation (green curves indicate the seg-
mentation reference, red curves indicate the segmented fluid) of an OCT
image with CSR. (a) Fluid segmented via the IF algorithm; (b) Fluid was
segmented via the MGS algorithm; (c) Fluid segmented via the GSGC
algorithm; (d) Fluid segmented via the RFSGLW algorithm; (e) Fluid seg-
mented via the RFHLW algorithm; (f) 3D visualization of fluid segmented
via the RFHLW algorithm (red) and manual annotation (green).

TABLE VI
P-VALUES OF FLUID SEGMENTATION

TPF FPF DSC

RFHLW vs IR 1.47 × 10−32 2.24 × 10−4 1.69 × 10−29

RFHLW vs GSGC 7.61 × 10−9 0.4162 1.95 × 10−6

RFHLW vs MGS 1.13 × 10−4 7.74 × 10−8 4.23 × 10−9

RFHLW vs RFSGLW 0.0010 3.90 × 10−5 0.0382

For the IR algorithm [35], the same threshold algorithm was
employed to segment fluid on the same data. The fluid was
segmented between surface 7, 11 detected via the IR algorithm.
Because of the inaccurate surface detection, small region of fluid
was obtained as shown in Figs. 10(a) and 11(a). This led to much
lower values of TPF, FPF and DSC as shown in the first row
of Table V. Since morphological changes are similar between
CSR and the symptomatic exudate-associated derangement, the
GSGC algorithm [11] was also tested on the same data. Surface 7
and surface 11 were used as the two constraining surfaces. How-
ever, the GSGC algorithm for fluid segmentation depends on the
surface detection algorithm. As can be seen from the IR algo-
rithm [35] and the MGS algorithm [9], the GS based surface
detection algorithm is not robust to deformation of retinal lay-
ers, and thus slight improvement was achieved as shown in the
second row of Table V. For the MGS algorithm [9], the same
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Fig. 11. Automatic fluid segmentation (green curves indicate the seg-
mentation reference, red curves indicate the segmented fluid) of an
OCT image with CSR and pigment epithelial detachments. (a) Fluid seg-
mented via the IF algorithm; (b) Fluid segmented via the MGS algorithm;
(c) Fluid segmented via the GSGC algorithm; (d) Fluid segmented via
the RFSGLW algorithm; (e) Fluid segmented via the RFHLW algorithm;
(f) 3D visualization of fluid segmented via the RFHLW algorithm (red) and
manual annotation (green); (g) The blue curve indicates the footprint of
the above surface of the segmented fluid, the yellow curves indicate the
coarse footprint of pigment epithelial detachments and the red curve
indicates the final fitted footprint of pigment epithelial detachments.

threshold algorithm was also used to segment fluid on the same
data between surface 7 and surface 11. TPF was 80.19± 21.76%
via the MGS algorithm; however, FPF also reached 0.18±
0.18% and DSC was only 74.58± 20.56%. This is also because
the MGS algorithm produced large surface detection errors of
surface 7 and surface 11. Due to the inaccurate surface 7 de-
tection, values of TPF and DSC were also smaller than the he
RFHLW algorithm. As shown Table VI, the RFHLW algorithm
achieved statistically different results compared to the IR algo-
rithm [35], the GSGC algorithm [11], the MGS algorithm [9]
and the RFSGLW algorithm.

C. Running Time

The proposed algorithm was implemented in C++ and tested
on a PC with Intel i5-3450 CPU@3.10GHz and 16 GB of RAM.
The average running time of the algorithm was 407± 54 s for

CSR OCT images. The average running time of the IF algorithm
was 103 ± 27 s for CSR OCT images. The average running time
of the GSGC algorithm for region segmentation was 498± 51 s
for CSR OCT images. The average running time of the MGS
algorithm was 458± 141 s for CSR OCT images.

IX. CONCLUSION

In this paper, a supervised method is proposed for the auto-
matic segmentation of retinal layers and fluid on OCT scans of
eyes with CSR. After surface 1 is detected, the B-scan image is
aligned and flattened. Only twenty four features are generated
for the training and testing of random forests classifiers, and
then eight initial surfaces are detected as constraints. By uti-
lizing the original intensities of OCT images and the layer-like
shape information, a hyper graph is constructed to find the min-
imal oriented path cost. Surfaces between neighboring layers
are successively detected from surfaces 2 to 11 based on the
hyper graph live wire algorithm. With the proper surface detec-
tion, fluid segmentation can be achieved by using a thresholding
method. The proposed method can also cope with the OCT im-
ages with both central serous retinopathy and pigment epithelial
detachments.

The proposed method is able to deal with abnormalities such
as fluid and PEDs. For testing CSR images, surface detection
errors were statistically significantly smaller than those of the
state-of-art methods such as the IR algorithm [35] and the MGS
algorithm [9]. Meanwhile, the RFHLW algorithm also outper-
formed the RFSGLW algorithm. This is because ellipsoid zone
was higher enhanced via the bright layer detection filter while
ELM was restrained. Simultaneous fluid segmentation was also
achieved. The proposed method also achieved higher true pos-
itive fraction, higher Dice similarity coefficient and lower false
positive fraction, which were statistically different from the re-
sults obtained by the IR algorithm [35], the MGS algorithm [9],
the GSGC algorithm [11] and the RFSGLW algorithm. In sum-
mary, the proposed algorithm can be utilized for quantitative
analysis of features of individual retinal layers for OCT images
with CSR.

REFERENCES

[1] G. Staurenghi, S. Sadda, U. Chakravarthy, and R. F. Spaide, “Proposed lex-
icon for anatomic landmarks in normal posterior segment spectral-domain
optical coherence tomography: The IN-OCT consensus,” Ophthalmology,
vol. 121, no. 8, pp. 1572–1578, 2014.

[2] M. G. Field et al., “Detection of retinal metabolic stress due to central
serous retinopathy,” Retina, vol. 29, no. 8, pp. 1162–1166, 2009.

[3] B. Hassan, G. Raja, T. Hassan, and M. U. Akram, “Structure tensor based
automated detection of macular edema and central serous retinopathy
using optical coherence tomography images,” J. Opt. Soc. Amer. A, vol. 33,
no. 4, pp. 455–463, 2016.

[4] H. Matsumoto, T. Sato, and S. Kishi, “Outer nuclear layer thickness at
the fovea determines visual outcomes in resolved central serous chori-
oretinopathy,” Amer. J. Ophthalmol., vol. 148, no. 1, pp. 105–110, 2009.

[5] C. Ahlers, W. Geitzenauer, G. Stock, I. Golbaz, U. Schmidt-Erfurth, and
C. Prünte, “Alterations of intraretinal layers in acute central serous chori-
oretinopathy,” Acta ophthalmologica, vol. 87, no. 5, pp. 511–516, 2009.

[6] J. Novosel, Z. Wang, H. de Jong, M. van Velthoven, K. A. Vermeer, and
L. J. van Vliet, “Locally-adaptive loosely-coupled level sets for retinal
layer and fluid segmentation in subjects with central serous retinopathy,”
in Proc. 2016 IEEE 13th Int. Symp. Biomed. Imag., 2016, pp. 702–705.



XIANG et al.: AUTOMATIC RETINAL LAYER SEGMENTATION OF OCT IMAGES WITH CENTRAL SEROUS RETINOPATHY 295

[7] C. Jin et al., “3d fast automatic segmentation of kidney based on mod-
ified AAM and random forest,” IEEE Trans. Med. Imag., vol. 35, no. 6,
pp. 1395–1407, Jun. 2016.

[8] M. Yaqub, M. K. Javaid, C. Cooper, and J. A. Noble, “Investigation of
the role of feature selection and weighted voting in random forests for
3-d volumetric segmentation,” IEEE Trans. Med. Imag., vol. 33, no. 2,
pp. 258–271, Feb. 2014.

[9] F. Shi et al., “Automated 3-d retinal layer segmentation of macular op-
tical coherence tomography images with serous pigment epithelial de-
tachments,” IEEE Trans. Med. Imag., vol. 34, no. 2, pp. 441–452, Feb.
2015.

[10] A. Lang et al., “Retinal layer segmentation of macular OCT images using
boundary classification,” Biomed. Opt. Express, vol. 4, no. 7, pp. 1133–
1152, 2013.

[11] X. Chen, M. Niemeijer, L. Zhang, K. Lee, M. D. Abràmoff, and M.
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pling voxel classification for segmentation of intraretinal and subretinal
fluid in longitudinal clinical OCT data,” IEEE Trans. Med. Imag., vol. 34,
no. 7, pp. 1616–1623, Jul. 2015.

[28] J. Wang et al., “Automated volumetric segmentation of retinal fluid
on optical coherence tomography,” Biomed. Opt. Express, vol. 7, no. 4,
pp. 1577–1589, 2016.

[29] L. de Sisternes, G. Jonna, J. Moss, M. F. Marmor, T. Leng, and D. L. Rubin,
“Automated intraretinal segmentation of SD-OCT images in normal and
age-related macular degeneration eyes,” Biomed. Opt. Express, vol. 8,
no. 3, pp. 1926–1949, 2017.

[30] J. Novosel, K. A. Vermeer, J. H. de Jong, Z. Wang, and L. J. van Vliet,
“Joint segmentation of retinal layers and focal lesions in 3-d OCT data of
topologically disrupted retinas,” IEEE Trans. Med. Imag., vol. 36, no. 6,
pp. 1276–1286, Jun. 2017.

[31] R. T. Whitaker and X. Xue, “Variable-conductance, level-set curvature for
image denoising,” in Proc. 2001. Int. Conf. Image Process., 2001, vol. 3,
pp. 142–145.

[32] A. X. Falcão, J. K. Udupa, S. Samarasekera, S. Sharma, B. E. Hirsch,
and R. d. A. Lotufo, “User-steered image segmentation paradigms: Live
wire and live lane,” Graphical Models Image Process., vol. 60, no. 4,
pp. 233–260, 1998.

[33] A. X. Falcão and J. K. Udupa, “A 3d generalization of user-steered live-
wire segmentation,” Med. Image Anal., vol. 4, no. 4, pp. 389–402, 2000.

[34] R. L. Graham and F. F. Yao, “Finding the convex hull of a simple polygon,”
J. Algorithms, vol. 4, no. 4, pp. 324–331, 1983.

[35] Iowa reference algorithms: Human and murine 3d OCT retinal layer anal-
ysis and display, Iowa Inst. Biomed. Imag., Iowa City, IA, USA. [Online].
Available: http://www.biomed-imaging.uiowa.edu/content/shared-softw
are-download



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


